URSOLIC ACID IN CERTAIN PLANTS

A. V. Borovkov and N. V. Belova

Khimiya Prirodnykh Soedinenii, Vol. 3, No. 1, pp. 62-63, 1967

In the investigation of certain plants growing in the Leningrad region (see below) we have detected a triterpene widely distributed in the plant world, ursolic acid with the composition $C_{30}H_{48}O_3$, which we identified by its melting point, the results of elemental analysis, IR spectra, and a mixed melting point with an authentic sample. The ursolic acid from Empetrum nigrum L. and Thymus serpyllum L. has been described previously [1, 2].

We isolated ursolic acid by the usual method [2]. The chloroform extract was evaporated to small bulk and treated with 5% caustic potash. The alkaline extract was acidified and the acids liberated were extracted with ether. The solvent was evaporated and the dry residue was crystallized from ethyl alcohol.

plant		Part of the plant
Campanula rotundifolia L. Knautia arvensis (L.) Coult.	}	Epigeal
Sambucus racemosa L. Siringa yulgaris L.	Ì	Roots
Lonicera tatarica L.	}	
Epilobium angustifolium L.		Epigeal Leaves
Cassandra calyculata Don.	,	Leaves
Antennaria dioica (L.) Gaerth. Empetrum nigrum L.	(Epigeal
Thymus serpyllum L.	}	Epigeai

REFERENCES

- 1. Elsevier's Encyclop. of Org. Chem., 14, 566, 1940.
- 2. C. H. Brieskorn, K. H. Eberhardt and M. Briner, Archiv. der Pharm., 286/10, 501, 1953.

13 December 1966

Komarov Botanical Institute, Leningrad

THE GLYCOSIDES OF ELEUTHEROCOCCUS SENTICOSUS

II. The Structure of Eleutherosides A, B₁, C, and D

Yu. S. Ovodov, G. M. Frolova, M. Yu. Nefedova, and G. B. Elyakov Khimiya Prirodnykh Soedinenii, Vol. 3, No. 1, pp. 63-64, 1967

In a preceding communication [1], a method was described for obtaining from the roots of Eleutherococcus senticosus Max a physiologically active glycosidic fraction from which a number of glycosides provisionally called "eleutherosides" were isolated in the individual state.

As previously shown [2], eleutheroside E is identical with acanthoside D, which is a diglucoside of (-)-syringare-sinol [3].

Eleutheroside A, mp 295°C, $[\alpha]_D^{20}$ -35° (in pyridine) has been identified as daucosterol from its melting point and analytical, spectroscopic, and chromatographic data. Daucosterol has previously been isolated from ginseng [4] and acanthopanax [5].

Eleutheroside B₁, mp 218°C, $[\alpha]_D^{20} + 80^\circ$ (in methanol), can easily be obtained from fractions enriched in a mixture of eleutherosides B and B₁ by fractional crystallization or by chromatography on silica gel previously impregnated with aqueous ammonia (pH 9.0) using gradient elution with the solvent system chloroform saturated with aqueous ammonia (pH 8.5-9.0), ethanol (100: $0 \rightarrow 50$: 50). The acid hydrolysis of eleutheroside B₁ yielded glucose and a genin $C_{11}H_{10}O_5$.

The genin of eleutheroside B_1 was identified as isofraxidin (7-hydroxy-6, 8-dimethoxycoumarin), which has been isolated from the roots of <u>Fraxinus excelcior</u> [6] and was then obtained by the hydrolysis of calycanthoside (isofraxidin